

Available online at www.sciencedirect.com

Metabolism Clinical and Experimental

Metabolism Clinical and Experimental 54 (2005) 552-558

www.elsevier.com/locate/metabol

High-sensitivity C-reactive protein is associated with insulin resistance and cardiovascular autonomic dysfunction in type 2 diabetic patients

Futoshi Anan^a, Naohiko Takahashi^{a,*}, Mikiko Nakagawa^b, Tatsuhiko Ooie^b, Tetsunori Saikawa, MD^b, Hironobu Yoshimatsu^a

^aDepartment of Internal Medicine 1, Faculty of Medicine, Oita University, Oita 879-5593, Japan ^bDepartment of Laboratory Medicine, Faculty of Medicine, Oita University, Oita, Japan Received 26 July 2004; revised 5 November 2004; accepted 7 November 2004

Abstract

We tested the hypothesis that elevated levels of plasma high-sensitivity C-reactive protein (HSCRP) are associated with insulin resistance/hyperinsulinemia and cardiovascular autonomic dysfunction in type 2 diabetic patients without insulin treatment. The study group consisted of 17 type 2 diabetic patients with high HSCRP (0.3-1.0 mg/dL; age, 59 ± 8 years, mean \pm SD; high HSCRP group). The control group consisted of 18 age-matched type 2 diabetic patients with low HSCRP (<0.3 mg/dL; 59 ± 7 years; low HSCRP group). Cardiovascular autonomic function was assessed by baroreflex sensitivity, heart rate variability, plasma norepinephrine concentration, and cardiac metaiodobenzylguanidine (MIBG) labeled with iodine 123 scintigraphic findings. Baroreflex sensitivity was lower in the high HSCRP group than in the low HSCRP group (P < .05). Early and delayed ¹²³I-MIBG myocardial uptake values were lower (P < .05 and P < .05, respectively) and the percent washout rate of ¹²³I-MIBG was higher (P < .01) in the high HSCRP group than in the low HSCRP group. Fasting plasma insulin concentration (P < .01) and the homeostasis model assessment index (P < .01) were higher in the high HSCRP group than in the low HSCRP group. Multiple regression analysis revealed that the level of HSCRP was independently predicted by fasting plasma insulin concentration and myocardial uptake of ¹²³I-MIBG at a delayed phase. Our results suggest that high levels of HSCRP are associated with depressed cardiovascular autonomic function and hyperinsulinemia and that fasting plasma insulin concentration and myocardial uptake of ¹²³I-MIBG at a delayed phase are independent predictors of HSCRP level in our Japanese patients with type 2 diabetes mellitus. © 2005 Elsevier Inc. All rights reserved.

1. Introduction

It has been reported that measurement of inflammatory markers such as high-sensitivity C-reactive protein (HSCRP) is an important method of identifying individuals at risk for cardiovascular events [1-3]. In diabetic patients, cardiovascular autonomic dysfunction is strongly related to cardiovascular mortality [4]. We have reported that depressed cardiovascular function is associated with insulin resistance in type 2 diabetic patients [5,6]. Although plasma C-reactive protein (CRP) is reported to be associated with insulin resistance in type 2 diabetic patients [7,8], the significance of increased HSCRP in diabetic cardiovascular autonomic function has not been adequately investigated.

We hypothesized that increased levels of HSCRP are associated with cardiovascular autonomic dysfunction and insulin resistance in type 2 diabetic patients. To test our hypothesis, we compared in the present study the baroreflex sensitivity (BRS), heart rate variability (HRV), plasma norepinephrine concentrations, and cardiac metaiodobenzylguanidine (MIBG) labeled with iodine 123 scintigraphic findings in addition to metabolic profiles of Japanese type 2 diabetic patients with low HSCRP with those of patients with high HSCRP, followed by evaluating the independent predictors of HSCRP in these populations.

2. Subjects and methods

The study was approved by the ethics review board of our institution and prior informed consent was obtained from all patients. Seventy-five consecutive Japanese patients with type 2 diabetes mellitus who were admitted to our

^{*} Corresponding author. Tel.: +81 97 586 5793; fax: +81 97 549 4480. E-mail address: takanao@med.oita-u.ac.jp (N. Takahashi).

department in 2002 were screened. Among them, 48 patients who did not have an organic heart disease as determined by physical examination, chest x-ray, 12-lead electrocardiography (ECG), echocardiography, treadmill exercise ECG, and thallium 201 cardiac scintigraphy were enrolled. All patients underwent clinical examination to exclude the presence of secondary hypertension. Essential hypertension was defined as diastolic blood pressure equal to 90 mm Hg or higher, systolic blood pressure equal to 140 mm Hg or higher, or self-reported use of antihypertensive medication [9]. Patients with abnormal plasma creatinine concentrations ($\geq 1.2 \text{ mg/dL}$) or those with macroalbuminuria ($\geq 300 \text{ mg/d}$) were excluded from the study. For physical examinations, all patients were evaluated on the next morning of admission after an overnight fast and were instructed to avoid drinking fluids. We measured height,

Table 1
Clinical characteristics of studied patients

	Low HSCRP	High HSCRP	P
	group	group	
Age (y)	59 ± 7	59 ± 8	ns
Sex distribution	8:10	9:8	ns
(men/women)			
HSCRP (mg/dL)	0.052 ± 0.028	0.591 ± 0.179	<.0001
Duration of diabetes (y)	7.8 ± 3.3	9.3 ± 5.1	ns
Hypertension (%)	61	65	ns
Dyslipidemia (%)	33	47	ns
Drug use (%)			
Sulfonylurea	50	53	ns
α-Glucosidase inhibitors	44	35	ns
Pioglitazone	6	6	ns
Statin	33	29	ns
Calcium channel antagonists	39	41	ns
ACE inhibitors	28	24	ns
Angiotensin receptor blocker	56	53	ns
Body mass index (kg/m ²)	24.5 ± 4.2	28.0 ± 4.3	<.01
Waist circumference (cm)	79.3 ± 7.7	85.9 ± 9.5	<.05
Hip circumference (cm)	95.6 ± 7.0	96.6 ± 5.5	ns
Waist-hip ratio	0.83 ± 0.07	0.89 ± 0.07	<.05
Systolic blood	127 ± 19	133 ± 16	ns
pressure (mm Hg)			
Diastolic blood	76 ± 10	77 ± 8	ns
pressure (mm Hg)			
Heart rate (bpm)	68 ± 8	70 ± 7	ns
Fasting plasma	144 ± 32	169 ± 55	ns
glucose (mg/dL)			
Fasting immunoreactive	5.6 ± 1.9	8.0 ± 2.4	<.01
insulin (μU/mL)			
Homeostasis model	1.9 ± 0.8	3.3 ± 1.4	<.01
assessment index			
Hemoglobin A1c (%)	7.8 ± 1.3	8.0 ± 1.5	ns
Total cholesterol (mg/dL)	198 ± 32	209 ± 24	ns
Triglyceride (mg/dL)	140 ± 69	148 ± 40	ns
HDL cholesterol (mg/dL)	47 ± 9	40 + 8	<.05
Uric acid (mg/dL)	5.3 ± 1.6	6.2 ± 1.3	ns
Creatinine (mg/dL)	0.7 ± 0.2	0.8 ± 0.2	ns
Creatinine	106 ± 29	92 ± 23	ns
clearance (mL/min)			
Urine albumin	48 ± 77	171 ± 141	<.01
excretion (mg/d)			

Data are mean \pm SD. ns indicates not significant.

weight, and waist and hip circumferences. Body mass index and waist-to-hip circumference ratio (waist-hip ratio) were calculated. For measurements of HSCRP, blood was sampled in each patient after a 12-hour overnight fast from the antecubital vein. Serum from blood samples was separated and stored in a deep freezer at -20°C until assayed. High-sensitivity assays for CRP were performed according to previously described methods (Dade Behring, Tokyo, Japan) [10]. By this assay, 17 patients were assigned to have high HSCRP (0.3-1.0 mg/dL; high HSCRP group) [11]. We also recruited 18 age-matched patients with low HSCRP (<0.3 mg/dL; low HSCRP group) who were selected from the original 48 enrolled patients. Patients who showed higher levels of CRP (ie, >1.0 mg/dL) were excluded from the study [12]. The clinical characteristics of patients from the low and high HSCRP groups are summarized in Table 1. Eleven of 17 patients from the high HSCRP group and 11 of 18 patients from the low HSCRP group met the criterion of essential hypertension and all these patients were being treated with calcium channel antagonists, angiotensin-converting enzyme (ACE) inhibitors, and/or angiotensin II receptor blockers. None of the patients were being treated with aspirin, diuretics, β - or α-blockers, or insulin. Dyslipidemia was defined as fasting triglycerides equal to 200 mg/dL or higher or HDL cholesterol below 45 mg/dL for women and below 35 mg/dL for men [9]. Eight of 17 patients from the high HSCRP group and 6 of 18 patients from the low HSCRP group met the criterion of dyslipidemia.

2.1. Echocardiography

M-mode 2-dimensional echocardiography and cardiac Doppler recordings were obtained using a phase-array echo-Doppler system. Echocardiograms were obtained in a standard manner using standard parasternal, short axis, and apical views. The left ventricular mass was calculated according to Devereux et al [13]: left ventricular mass = $\{1.04 ([LVIDd + IVSTd + PWTd]^3 - LVIDd^3) - 14 g\},$ where LVIDd indicates left ventricular internal dimension at end diastole; IVSTd, intraventricular septal thickness at end diastole; and PWTd, posterior wall thickness at end diastole. The left ventricular mass was divided by body surface area to calculate the left ventricular mass index. Pulsed Doppler recordings were made from standard apical 4-chamber view. Mitral inflow velocity was recorded with the sample volume at the mitral annulus level taking the average of 3 or more cardiac cycles. The peak velocity of early (E) and late ventricular filling (A) was determined, and the ratio (E/A) and deceleration time were recorded.

2.2. Cardiovascular autonomic function tests

All subjects were studied while in the supine position in a quiet room with dimmed lights between 9:00 and 11:00 AM [5,14]. A catheter was inserted in the right cubital vein, and arterial blood pressure was recorded noninvasively by tonometry (Jentow-7700, Nihon Colin, Komaki, Japan).

Table 2 Echocardiographic findings

	Low HSCRP	High HSCRP	P
	group	group	
EF (%)	71 ± 3	70 ± 4	ns
LVIDd (mm)	47 ± 3	49 ± 3	ns
LVIDs (mm)	30 ± 2	32 ± 3	ns
IVSTd (mm)	8.7 ± 0.7	8.9 ± 1.3	ns
PWTd (mm)	8.8 ± 0.9	9.2 ± 1.1	ns
LVMI (g/m ²)	106 ± 16	112 ± 25	ns
E-peak velocity (cm/s)	65 ± 10	62 ± 9	ns
A-peak velocity (cm/s)	69 ± 11	79 ± 10	<.01
E/A ratio	0.97 ± 0.18	0.79 ± 0.13	<.01
Deceleration time (ms)	$232\ \pm\ 23$	250 ± 26	<.05

Data are mean ± SD. EF indicates ejection fraction; LVIDd, left ventricular internal dimension at end diastole; LVIDs, left ventricular internal dimension at end systole; IVSTd, interventricular septal thickness at end diastole; PWTd, posterior wall thickness at end diastole; LVMI, left ventricular mass index.

The tonometric sensor was attached over the left radial artery. The accuracy of continuous blood pressure monitoring has been demonstrated previously [15]. Arterial blood pressure and a standard 12-lead ECG were monitored simultaneously; data were stored in a PCM data recorder (RD-200T, TEAC, Tokyo). Three-lead precordial Holter ECG recordings (model 459, Del Mar Avionics, Irvine,

Calif) were also obtained throughout the procedure for analysis of HRV.

After an interval of 30 minutes to permit stabilization of the cardiovascular baroreflex mechanism, each patient was asked to breathe at a rate of 15 breaths per minute using a metronome to maximize regularity between respiration and cardiovascular function. Blood samples were obtained from the venous catheter to measure plasma norepinephrine by radioenzymatic assay [16]. Baroreflex sensitivity was assessed by the phenylephrine method as described previously [5,14]. Briefly, phenylephrine (2-3 μ g/kg) was injected over a 15-second period to obtain a 15 to 40 mm Hg rise in systolic blood pressure. Baroreflex sensitivity was calculated as the slope of the linear regression line relating systolic blood pressure changes to RR interval changes. Regression lines with more than 20 data points and a correlation coefficient (r) greater than 0.8 were accepted for analysis. The average of the 2 slope values was taken as the BRS value [14].

Heart rate variability was analyzed using a 300-second interval on Holter ECG recordings immediately before phenylephrine injection. The power spectrum of the RR interval was computed by a fast Fourier transform and expressed as the area under the power spectrum [17]. We calculated the power of 2 spectral bands, the low-frequency (LF) component at 0.04 to 0.15 Hz and the high-frequency

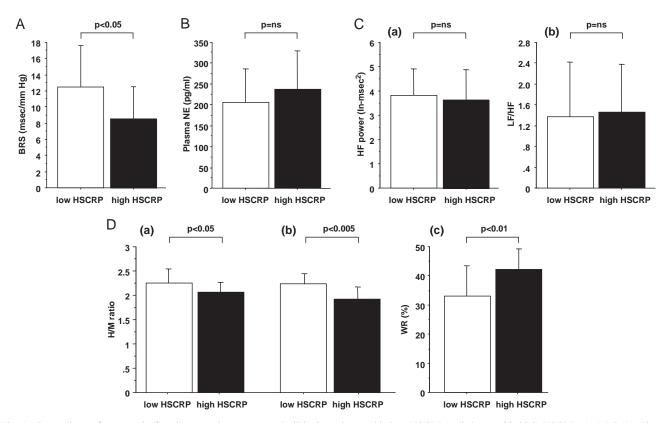


Fig. 1. Comparison of autonomic function tests between type 2 diabetic patients with low HSCRP and those with high HSCRP. A, BRS. B, Plasma norepinephrine (NE) concentration. C, HRV. Power of HF component (0.15-0.40 Hz, a) and the ratio of the LF power (0.04-0.15 Hz) to HF power (LF/HF, b). The distribution of HRV values was skewed and the values were thus transformed to natural logarithmic values. D, Cardiac ¹²³I-MIBG scintigraphic findings. Myocardial uptake of ¹²³I-MIBG at early (a) and delayed (b) phases. Myocardial uptake of ¹²³I-MIBG is expressed as the mean H/M ratio. c, Percent WR of ¹²³I-MIBG. Data are mean ± SD. ns indicates not significant.

(HF) component at 0.15 to 0.40 Hz. Based on their skewed distribution, the measured values of HRV were transformed to natural logarithmic values. The ratio of LF to HF (LF/HF) was also computed.

Planar and single-photon emission-computed tomography studies were performed both at 15 minutes (early) and 4 hours (delayed) after the injection of 111 MBq of ¹²³I-MIBG using a rotating gamma camera (ZLC 7500, Siemens, Munich, Germany). Data were analyzed with an analysis software (SCINTIPAC, Shimadzu, Kyoto, Japan). The anterior planar images from early and delayed ¹²³I-MIBG studies were analyzed visually. For semiquantitative analysis, regions of interest were drawn over the whole heart and a 10×10 mm area over the upper mediastinum on the early and delayed planar images was used to calculate the mean heart-to-mediastinum (H/M) ratio. After correcting for the physical decay of ¹²³I, the percent washout rate (WR) of the tracer from the myocardium was determined over a 4-hour period. Insulin resistance was evaluated by the homeostasis $model assessment (HOMA) index = {(fasting plasma insulin}$ $[\mu U/mL] \times \text{fasting plasma glucose [mmol/L]}/22.5$ [18].

2.3. Statistical analysis

Data are presented as mean \pm SD. Differences between the 2 groups were analyzed by the unpaired Student t test, χ^2 test, or by the Fisher exact probability test. A P value of less than .05 was considered statistically significant. Simple (Spearman rank) correlation coefficients between HSCRP and various parameters were calculated, and a stepwise multiple regression analysis was then used to evaluate the independent association of these variables with HSCRP. In our multivariate analysis, F values equal to 4 or higher were considered significant.

3. Results

As shown in Table 1, mean age was similar between the high and low HSCRP groups and there were no significant differences with respect to sex, duration of diabetes, and administered medications. Body mass index was higher in the high HSCRP group than in the low HSCRP group (P <.01). Waist circumference and waist-hip ratio but not hip circumference were greater in the high HSCRP group than in the low HSCRP group (P < .05 for each). Regarding glucose metabolism, fasting plasma insulin concentrations and HOMA index were higher (P < .01 for each) in the high HSCRP group than in the low HSCRP group. However, there was no significant difference in fasting plasma glucose concentration and hemoglobin A1c. With regard to lipid metabolism, serum HDL cholesterol was lower in the high HSCRP group than in the low HSCRP group (P < .05), whereas serum total cholesterol and triglyceride showed no significant difference between the groups. Regarding renal function, there was no significant difference in the serum creatinine concentration or creatinine clearance. However, urine albumin excretion was greater in the high HSCRP group than in the low HSCRP group (P < .01). The hemodynamic data listed in Table 1 were obtained immediately before BRS assessment. The resting heart rate and systolic and diastolic blood pressures were not significantly different between the 2 groups.

Table 2 presents a summary of echocardiographic findings. The left ventricular dimensions at end diastole and end systole, intraventricular septal and posterior wall thickness at end diastole, ejection fraction, and left ventricular mass index were essentially similar in the 2 groups. With regard to the left ventricular diastolic function, the peak velocity of late ventricular filling (A) was higher and the E/A ratio was lower in the high HSCRP group compared with the low HSCRP group (P < .01 for each). Deceleration time was longer in the high HSCRP group than in the low HSCRP group (P < .05).

Fig. 1 summarizes the results of the cardiovascular autonomic function tests. Baroreflex sensitivity was lower in the high HSCRP group than in the low HSCRP group $(8.5 \pm 4.0 \text{ vs } 12.4 \pm 5.1 \text{ ms/mm Hg}; P < .05; \text{ Fig. 1A}).$

Table 3
Correlations of HSCRP to measures of variables

Parameters	Univariate		
	\overline{R}	P	
Age	0.080	.6490	
Sex (Men)	0.129	.4616	
Duration of diabetes mellitus	0.078	.6569	
Body mass index	0.424	.0111	
Waist circumference	0.432	.0096	
Hip circumference	0.165	.3439	
Waist hip ratio	0.365	.0311	
Systolic blood pressure	0.293	.0878	
Diastolic blood pressure	0.093	.5952	
Heart rate	0.196	.2604	
EF	0.145	.4058	
LVIDd	0.305	.0752	
LVIDs	0.316	.0648	
IVSTd	0.229	.1864	
PWTd	0.327	.0553	
LVMI	0.198	.2621	
E/A ratio	-0.415	.0132	
Deceleration time	0.321	.0601	
Total cholesterol	0.174	.3161	
Triglyceride	0.241	.1627	
HDL cholesterol	-0.405	.0158	
Uric acid	0.286	.0959	
Fasting plasma glucose	0.253	.1425	
Fasting immunoreactive insulin	0.548	.0007	
Homeostasis model assessment index	0.558	.0005	
Hemoglobin A1c	0.125	.4729	
Creatinine	0.182	.2946	
Creatinine clearance	0.294	.0870	
Urine albumin excretion	0.421	.0118	
BRS	-0.376	.0258	
Plasma norepinephrine	0.065	.7090	
HF power	-0.123	.4826	
LF/HF	0.023	.8972	
H/M ratio at early phase	-0.370	.0286	
H/M ratio at delayed phase	-0.601	.0001	
WR	0.447	.0071	

Certain abbreviations are explained in the footnote to Table 2.

Table 4
Stepwise regression analyses between HSCRP and various parameters

Independent variable	Regression coefficient	SE	Standard regression coefficient	F
To HSCRP intercept H/M ratio at delayed phase	1.092 -0.529	0.149	-0.470	12.522
F-IRI	0.048	0.016	0.391	8.669

F-IRI indicates fasting immunoreactive insulin.

Plasma norepinephrine concentration was similar in both groups (high HSCRP, 239 \pm 89 pg/mL; low HSCRP, 206 \pm 81 pg/mL; P = ns; Fig. 1B). Analysis of HRV revealed that the HF power and the LF/HF ratio were not significantly different between the 2 groups (3.6 \pm 1.3 vs 3.8 \pm 1.1 [P = ns] and 1.5 \pm 0.9 vs 1.4 \pm 1.0 ln-ms² [P = ns], respectively; Fig. 1C). Cardiac ¹²³I-MIBG scintigraphy disclosed that the H/M ratios at early and delayed phases were lower in the high HSCRP group than in the low HSCRP group (2.06 \pm 0.21 vs 2.24 \pm 0.28 [P < .05] and 1.92 \pm 0.24 vs 2.23 \pm 0.20 [P < .005], respectively; Fig. 1D). The percent WR of ¹²³I-MIBG was higher in the high HSCRP group than in the low HSCRP group (42.1% \pm 7.0% vs 33.1% \pm 10.1%; P < .01; Fig. 1D).

Table 3 depicts the correlation between HSCRP and age, body mass index, and various other variables in all the patients from both the high and low HSCRP groups. Highsensitivity C-reactive protein correlated positively with body mass index, waist circumference, waist-hip ratio, fasting plasma insulin, HOMA index, urine albumin excretion, and percent WR of ¹²³I-MIBG, whereas it correlated negatively with E/A ratio, HDL cholesterol, BRS, and H/M ratios at early and delayed phases. Multiple regression analysis was performed using these 12 variables with the stepwise procedure. The level of HSCRP was independently predicted by fasting plasma insulin and H/M ratio at a delayed phase (Table 4).

4. Discussion

In our present study, type 2 diabetic patients with high HSCRP had lower BRS and myocardial uptake and enhanced clearance of ¹²³I-MIBG, relative to the values in type 2 diabetic patients with low HSCRP. The body mass index, waist circumference, and waist-hip ratio were significantly greater in the low HSCRP group than in the high HSCRP group. Among the metabolic profiles, the fasting plasma insulin concentration and the HOMA index were higher in patients with high HSCRP than in those with low HSCRP. Multiple regression analysis revealed that the level of HSCRP was independently predicted by fasting plasma insulin concentration and H/M ratio at a delayed phase in our Japanese patients with type 2 diabetes.

Recent studies have demonstrated a close relationship between elevated CRP and insulin resistance [19,20]. Yudkin et al [19] reported that low but relatively elevated CRP in healthy subjects is related to insulin resistance when assessed by body mass index, HOMA index, blood pressure, HDL cholesterol, and triglyceride and that increased proinflammatory cytokines, interleukin-6 and tumor necrosis factor-α, play an important role in the low level of chronic inflammatory state. Subsequently, by analyzing the nondiabetic population of the Insulin Resistance Atherosclerosis Study (IRAS) [21], Festa et al [20] also reported that the level of CRP correlated with body mass index, insulin sensitivity (assessed by intravenous glucose tolerance test), and fasting plasma levels of insulin and proinsulin. They suggested that CRP is not only a predictor of cardiovascular events but also an independent predictor of insulin sensitivity. In the present study, consistently, the level of HSCRP correlated with body mass index, HDL cholesterol, fasting plasma insulin concentration, and HOMA index. Being different from those 2 prior studies [19,20], our study enrolled type 2 diabetic patients who did not receive insulin treatment. We used a cutoff value of HSCRP of 0.3 mg/dL to divide our patients into low and high HSCRP groups (<0.3 and 0.3-1.0 mg/dL) based on the American Heart Association (AHA)/Centers for Disease Control (CDC) scientific statement [11]. As shown in Table 1, the parameters that correlated with CRP, including body mass index, HDL cholesterol, fasting plasma glucose concentration, and HOMA index, but not others, were higher in the high HSCRP group than in the low HSCRP group. Taken together, we postulate that this criterion is appropriately applicable to our selected Japanese type 2 diabetic patients.

The novel and important finding of the present study is that patients with elevated HSCRP level had depressed cardiovascular autonomic function compared with those with low HSCRP when assessed by BRS and 123I-MIBG scintigraphic findings. The lower BRS has been established as a marker of depressed reflex vagal function. The reduced myocardial uptake of ¹²³I-MIBG (H/M ratio) reflects reduced norepinephrine content at presynaptic sites or reduced neural density, whereas an enhanced WR of ¹²³I-MIBG reflects enhanced release of norepinephrine from presynaptic sites [22]. In our study, the myocardial uptake of ¹²³I-MIBG was lower and its clearance was higher in the high HSCRP group than in the low HSCRP group. In particular, the myocardial uptake of ¹²³I-MIBG at a delayed phase was identified as an independent predictor for the level of CRP. To our knowledge, this is the first report demonstrating an association between HSCRP and cardiac 123I-MIBG scintigraphic findings, appearing to support a previous report demonstrating that disturbance of cardiac autonomic activity (sympathetic predominance) when assessed by HRV and inflammatory markers (including interleukin-6 and CRP) may be causes of metabolic syndrome [23].

What is the main cause of elevated HSCRP observed in the present study? We recently reported that the presence of microalbuminuria is characterized by depressed cardiovascular autonomic function and insulin resistance in type 2 diabetic patients who were not undergoing insulin treatment and that the fasting plasma insulin concentration, HOMA index, and the myocardial uptake of ¹²³I-MIBG at a delayed phase were independent predictors of urinary albumin excretion [6], very similar to the present observations. In that study, we discussed the predominant involvement of endothelial dysfunction in the development of microalbuminuria and depressed cardiovascular autonomic dysfunction. In fact, in a recent report demonstrating that CRP modifies the relation between blood pressure and microalbuminuria, the authors stressed the central role of endothelial dysfunction in this interaction [24]. Together with our present observation that urinary albumin excretion correlated with HSCRP, further studies are necessary to investigate the role of endothelial dysfunction in depressed cardiovascular autonomic dysfunction and insulin resistance in diabetic patients with high HSCRP.

Some methodological issues have to be addressed. First, 65% and 61% of our patients with high HSCRP and low HSCRP, respectively, had been diagnosed earlier with associated essential hypertension. All these patients were being treated with one or more antihypertensive drugs, including ACE inhibitors, angiotensin II receptor blockers, and calcium channel antagonists, before enrolment. In this regard, all these 3 drug classes have been reported to improve insulin resistance [25,26] and cardiovascular autonomic function [27-29]. In addition, 29% and 33% of our patients with high HSCRP and low HSCRP, respectively, had been diagnosed with dyslipidemia. All these patients were being treated with statin drugs, including simvastatin and pravastatin, before enrolment. In this regard, all these drug classes have been reported to decrease the level of CRP [30,31]. Therefore, these medications might have beneficially affected our results. As to antidiabetic medications, a considerable number of patients were being treated with sulfonylurea and/or α -glucosidase inhibitors, whereas only one patient in each group was treated with pioglitazone, an insulin-sensitizing drug reported to reduce HSCRP in type 2 diabetic patients [32]. Second, sex differences in various aspects of cardiovascular autonomic function and metabolism are well recognized. In the present study, there was no significant difference in these measures between the men and women (data not shown). Third, no patients enrolled in the present study underwent coronary angiography. Although ischemic heart disease could not be completely excluded, severe coronary artery disease was unlikely to be present in view of the normal treadmill exercise ECG testing and ²⁰¹Tl cardiac scintigraphy. Finally, we assessed metabolic profiles including fasting plasma glucose and insulin and cardiovascular autonomic function measurements only once during admission. It can be conceivable that reduction in plasma glucose and insulin by therapies including diet, exercise, and medication results in an improvement of cardiovascular autonomic function. Therefore, it remains to be studied as to what extent might the levels of plasma glucose and insulin at the time of the

evaluations have affected the measurements of cardiovascular autonomic function.

In conclusion, our findings suggest that the level of HSCRP in our Japanese patients with type 2 diabetes is associated with depressed cardiovascular autonomic function and hyperinsulinemia and that the fasting plasma insulin concentration and the myocardial uptake of ¹²³I-MIBG at a delayed phase are independent predictors of the level of HSCRP.

References

- Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342:836-43.
- [2] Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001;103:1813-8.
- [3] Vorchheimer DA, Fuster V. Inflammatory markers in coronary artery disease: let prevention douse the flames. JAMA 2001;286:2154-6.
- [4] Ewing DJ. Diabetic autonomic neuropathy and the heart. Diabetes Res Clin Pract 1996;30:S31-6.
- [5] Takahashi N, Nakagawa M, Saikawa T, et al. Effect of essential hypertension on cardiac autonomic function in type 2 diabetic patients. J Am Coll Cardiol 2001;38:232-7.
- [6] Takahashi N, Anan F, Nakagawa M, et al. Microalbuminuria, cardiovascular autonomic dysfunction, and insulin resistance in patients with type 2 diabetes mellitus. Metabolism 2004;53:1359-64.
- [7] Taniguchi A, Nagasaka S, Fukushima M, et al. C-reactive protein and insulin resistance in non-obese Japanese type 2 diabetic patients. Metabolism 2002;51:1578-81.
- [8] Matsumoto K, Sera Y, Abe Y, et al. Inflammation and insulin resistance are independently related to all-cause of death and cardiovascular events in Japanese patients with type 2 diabetes mellitus. Atherosclerosis 2003;169:317-21.
- [9] Liao D, Sloan RP, Cascio WE, et al. Multiple metabolic syndrome is associated with lower heart rate variability. The Atherosclerosis Risk in Communities Study. Diabetes Care 1998;21:2116-22.
- [10] Rifai N, Tracy RP, Ridker PM. Clinical efficacy of an automated high-sensitivity C-reactive protein assay. Clin Chem 1999;45: 2136-41.
- [11] Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 2003;107:499-511.
- [12] Frohlich M, Imhof A, Berg G, et al. Association between C-reactive protein and features of the metabolic syndrome: a population-based study. Diabetes Care 2000;23:1835-9.
- [13] Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;67:450-8.
- [14] Takahashi N, Nakagawa M, Saikawa T, et al. Noninvasive assessment of the cardiac baroreflex: response to downward tilting and comparison with the phenylephrine method. J Am Coll Cardiol 1999;34:211-5.
- [15] Sato T, Nishinaga M, Kawamoto A, et al. Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension 1993;21:866-74.
- [16] Kennedy B, Ziegler MG. A more sensitive and specific radioenzymatic assay for catecholamines. Life Sci 1990;47:2143-53.
- [17] Nakagawa M, Iwao T, Ishida S, et al. Circadian rhythm of the signal averaged electrocardiogram and its relation to heart rate variability in healthy subjects. Heart 1999;79:493-6.

- [18] Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.
- [19] Yudkin JS, Stehouwer CD, Emeis JJ, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999;19:972-8.
- [20] Festa A, D'Agostino Jr R, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000;102:42-7.
- [21] Wagenknecht LE, Mayer EJ, Rewers M, et al. The Insulin Resistance Atherosclerosis Study (IRAS): objectives, design and recruitment results. Ann Epidemiol 1995;5:464-71.
- [22] Sakata K, Shirotani M, Yoshida H, et al. Cardiac sympathetic nervous system in early essential hypertension assessed by ¹²³I-MIBG. J Nucl Med 1999;40:6-11.
- [23] Brunner EJ, Hemingway H, Walker BR, et al. Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation 2002;106:2659-65.
- [24] Stuveling EM, Bakker SJ, Hillege HL, et al. C-reactive protein modifies the relationship between blood pressure and microalbuminuria. Hypertension 2004;43:791-6.
- [25] Gavras HP. Issues in hypertension: drug tolerability and special populations. Am J Hypertens 2001;14(Pt.2):231S-6S.

- [26] Lender D, Arauz-Pacheco C, Breen L, et al. A double blind comparison of the effects of amlodipine and enalapril on insulin sensitivity in hypertensive patients. Am J Hypertens 1999;12: 208–303
- [27] Kontopoulos AG, Athyros VG, Didangelos TP, et al. Effect of chronic quinapril administration on heart rate variability in patients with diabetic autonomic neuropathy. Diabetes Care 1997;20:355-61.
- [28] Rodgers JE, Patterson JH. Angiotensin II-receptor blockers: clinical relevance and therapeutic role. Am J Health Syst Pharm 2001;58: 671-83.
- [29] Lefrandt JD, Heitmann J, Sevre K, et al. The effects of dihydropyridine and phenylalkylamine calcium antagonist classes on autonomic function in hypertension: the VAMPHYRE study. Am J Hypertens 2001;14:1083-9.
- [30] Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1999;100:230-5.
- [31] Albert MA, Danielson E, Rifai N, et al. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001; 286:64-70.
- [32] Satoh N, Ogawa Y, Usui T, et al. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabetes Care 2003;26:2493-9.